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ABSTRACT Traditionally, data analysis and theory have been viewed as separate disciplines,
each feeding into fundamentally different types of models. Modern deep learning technology is
beginning to unify these two disciplines and will produce a new class of predictively powerful
space weather models that combine the physical insights gained by data and theory. We call on
NASA to invest in the research and infrastructure necessary for the heliophysics’ community to
take advantage of these advances.

1. NASA’s place in the rapidly evolving machine learning landscape. The last decade has been a period of
explosive growth in the use of machine learning (ML), and deep neural networks (DNN) in particular, to solve
problems of practical interest (e.g., see LeCun et al., [Nature, 521, 2015] for a summary of how recent
advances in deep learning have enabled it to solve many real world problems). New developments in training
algorithms, programming environments and hardware have made sophisticated deep learning architectures
accessible to the non-specialist. Any scientist can now construct a complex neural network model with fewer
than a hundred lines of code and run it on a cluster of Graphics Processing Units (GPUs) using freely available
software packages like PyTorch (https://www.pytorch.org) and Tensorflow (https://www.tensorflow.org). This
crossover of deep learning technology into the general science community has resulted in a breadth of
exploration and experimentation that would not have been possible even a few years ago. A few recent
examples in the heliophysics community include the use of Convolutional Neural Networks (CNN) to infer the
vector magnetic field in the Sun’s photosphere from spectropolarimetric data [Liu et al., Ap.J, 894, 2020],
classify the internal structure of Interplanetary Coronal Mass Ejections (ICME’s) [Dos Santos et al., Solar
Physics, submitted, 2020], and predict magnetospheric substorm onset [Maimaiti et al., Space Weather, 17,
2019]. Many other examples from the ML-Helio 2019 Conference in September of 2019 [Camporeale, J.
Geophys. Res., 125, 2020] are collected at https://ml-helio.github.io.

NASA has taken notice and has invested in several efforts to use modern data science, ML and artificial
intelligence (AI) methods to support its science and engineering efforts. The Center for Data Science and
Technology (https://datascience.jpl.nasa.gov) coordinates such efforts at the Jet Propulsion Laboratory (JPL),
including a Data Science Working Group (established in 2014) to explore use cases and support pilot projects.
The Frontier Development Lab (https://frontierdevelopmentlab.org/), funded by NASA through a cooperative
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agreement with the SETI Institute, aims to build public-private partnerships (e.g., by pairing ML experts with
scientists) to apply AI to problems of public interest. The Center for HelioAnalytics (CfHA) at NASA-GSFC has
recently received NASA funding to initiate pilot projects that seek to enhance discovery in the Heliophysics
domain.

It is clear that NASA recognizes the need to build connections with the ML and AI communities to
support its mission. What is less clear is how NASA’s role in this broad and rapidly changing landscape will
evolve in the next decade and beyond. We argue that the enormous quantity of data that will be generated by

NASA’s heliophysics missions in the next several decades will make high performance deep learning (the
training of deep neural networks with billions of parameters on large supercomputers) the dominant method
for constructing models with data in the same way that high performance plasma simulation has become the
dominant method for constructing physics based models. Further, we believe that high performance deep
learning is about to transform the way we think about the development of space weather models, providing a
bridge between “physics based” and “data driven” modeling that will enable significant progress in both areas
(see Figure 1).

2. Deep learning for space weather prediction. Most of the current research on deep learning  applications in
heliophysics focuses, naturally, on space weather prediction. In this context, deep learning  models are often
viewed as complicated “black boxes,” more akin to empirical models than to physics  based models. This
prevailing view often makes scientists hesitant to adopt these techniques.  Experimentalists may ask, “What is
gained by replacing well-established empirical models with more  complex ones that require specialized
knowledge, software and high performance computing to build and  deploy?” Theorists and physics based
model developers may ask, “What generalizable physical insights can be extracted from this black box that can
compete with the knowledge we gain from our physics based  models?” The answer to the first question will
become clear as more applications show significant improvements over older methods (the Stokes inversion



problem [Liu et al., Ap.J., 894, 2020] is a good  example). The second question is often motivated by the
assumption that neural networks are uninterpretable, providing predictive power with little physical insight.
We argue that recent  developments in the use of deep neural networks to simulate physical systems are
blurring the traditional  boundaries between “physics based” and “empirical” modeling.

The great challenge for physics based space weather models is the vast range of scales that must be
addressed. Brute force kinetic simulations are out of the question and will remain so for the foreseeable
future. Even fluid simulations are expensive, making ensemble forecasting impractical. Can deep learning
help? Viewed as universal function approximators (e.g., Balázs [MSc Thesis, Eötvös Loránd University,  2001]),
neural networks would seem to be ideal models to discretize partial differential equations (PDEs).  Early
attempts (e.g., Lagaris et al. [IEEE Transactions on Neural Networks, 9, 1998]) were successful on simple
problems, achieving accuracy comparable to standard methods for simple systems with smooth  solutions; but
work stagnated for the next two decades due to the difficulties in training DNN with many  hidden layers.

With the renaissance of deep learning in the mid-2000’s came a resurgence of research on using DNN
to solve PDEs. Will recent DNN advances enable the simulation of complex multiscale systems (like the  Sun’s
atmosphere or Earth’s magnetosphere) consisting of relatively smooth regions with embedded kinetic scale
structures? Deep neural networks should excel at representing such systems. For example, the CNN
architecture, being closely related to sparse coding [Oldhausen et al., Vision Res., 37, 1997; Papyan et al., J.
Mach. Learn. Res., 18, 2017], is well suited to modeling the statistics of natural images even in the absence of
millions of training examples [Ulyanov et al, arXiv:1711.10925v4, 2020]. In general, DNN can be viewed as
efficient, multiscale basis function expansions, with each successive layer building more complex basis
functions from the more primitive ones in the previous layer. Thus, one might expect that DNN can be used for
the efficient solution of partial differential equations by collocation methods. Indeed, recent efforts to develop
“Physics Guided Neural Networks” (PGNN) [Karpatne et al., IEEE Trans. on knowledge and data eng., 29, 2017]
and “Physics Informed Neural Networks” (PINN) [Raissi et al., J. Comp. Phys., 378, 2019] are promising. The
PINN approach is particularly interesting for two reasons: 1) it uses automatic differentiation (available through
relatively simple interfaces in both PyTorch and Tensorflow) to incorporate PDE constraints exactly into the loss
function at training samples, 2) it has been extended to architectures like CNN that are tailored to modeling
multiscale systems.

An alternative to PINN is the “physics emulator” approach, in which one trains a DNN on a large
number of physics based simulations and then replaces the physics based simulation with the DNN. The
problem with this approach is obvious: large scale physics based simulations are expensive, and running a
million or more to train a DNN is not practical (though the resulting simulation efficiency gains could motivate
the archiving of simulation output for future use in training DNN). Recently, however, it has been shown how
to use the inherent ability of CNN to model natural signals [Ulyanov et al., arXiv:1711.10925v4, 2020] to
dramatically reduce the number of physics based simulations needed to train a physics emulator. The approach
[Kasim et al., arXiv:2001.08055v1, 2020], known as Deep Emulator Network Search (DENSE), employs an
algorithm known as Efficient Neural Architecture Search [Pham et al., arXiv:1802.03268v2, 2018] to optimize
the CNN architecture for a given problem domain. Dramatic reductions in the number of simulations required
to train the emulator have been achieved with this approach.

While the PINN and DENSE approaches represent significant advances in the use of deep learning to
model physical systems, we are clearly still at the start of the journey. How can more recent developments in
deep learning – e.g., Long Short Term Memory (LSTM) architectures for sequence prediction problems (like
natural language processing) or adversarial training methods that have proven so effective at randomly



generating complex data (like natural images or human faces) – be used to efficiently simulate physical
systems? How do we effectively use data to constrain our physics based models? With data constraints added
to the PINN loss function, for example, we can view the physics constraints as “regularizers” that prevent
overfitting of a small number of training samples. More research is needed to determine the optimal way to
combine data and physics constraints in DNN loss functions.

Ultimately, deep learning will produce powerful new methods for combining physics knowledge with
data to build efficient, predictively powerful space weather models (Figure 1). To enable the heliophysics
community to fully realize this potential, NASA should increase investment not just in the traditional top and
bottom paths of Figure 1. In addition to continuing to encourage machine learning efforts through the TMS
(Theory, Modeling and Simulations) and Science Center elements of the Heliophysics Grand Challenges
program, NASA should invest in two critical areas: 1) more agile research programs that explore how the latest
deep learning technology can be used to combine data and models in novel ways; 2) the computational
infrastructure (including large GPU clusters, similar to those supported by the Department of Energy) to enable
the training and deployment of large scale deep learning models. The next decade will be an exciting time as
new advances in high performance deep learning become more widely available. We call on NASA to continue
to encourage and invest in the research necessary for the heliophysics community to benefit from these
advances.


